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Wavelet Crosstalk Matrix and Its Application to
Assessment of Shift-Variant Imaging Systems

Jinyi Qi and Ronald H Huesman

Abstract—The objective assessment of image quality is essential
for design of imaging systems. Barrett and Gifford [1] introduced
the Fourier crosstalk matrix. Because it is diagonal for continuous
linear shift-invariant imaging systems, the Fourier crosstalk matrix
is a powerful technique for discrete imaging systems that are close
to shift invariant. However, for a system that is intrinsically shift-
variant, Fourier techniques are not particularly effective. Because
Fourier bases have no localization property, the shift-variance of
the imaging system cannot be shown by the response of individ-
ual Fourier bases; rather, it is shown in the correlation between
the Fourier coefficients. This makes the analysis and optimization
quite difficult. In this paper, we introduce a wavelet crosstalk ma-
trix based on wavelet series expansions. The wavelet crosstalk ma-
trix allows simultaneous study of the imaging system in both the
frequency and spatial domains. Hence it is well suited for shift-
variant systems. We compared the wavelet crosstalk matrix with
the Fourier crosstalk matrix for several simulated imaging systems,
namely the interior and exterior tomography problems, limited an-
gle tomography, and a rectangular geometry positron emission to-
mograph. The results demonstrate the advantages of the wavelet
crosstalk matrix in analyzing shift-variant imaging systems.

I. INTRODUCTION

The objective assessment of image quality is essential for
design of imaging systems. In [1], [2] the concept of Fourier
crosstalk matrix was introduced. The imaging system is treated
as a continuous-to-discrete mapping and the goal is to recover
as many of the Fourier coefficients as possible from the dis-
crete data. The Fourier crosstalk matrix measures how well each
Fourier coefficient can be estimated from the data. The diagonal
elements of this matrix specify the strength of a Fourier com-
ponent as reflected in the data, while the off-diagonal elements
give the degree of linear dependence of two different compo-
nents. The design strategy suggested in [1] was to make the
crosstalk matrix as nearly diagonal as possible. Recently the
Fourier crosstalk matrix was applied to the study of sampling of
multi-head coincidence systems [3].

However, making the Fourier crosstalk matrix diagonal is
equivalent to requiring the imaging system to be shift-invariant.
For imaging systems that are intrinsically shift-variant, such
diagonalization is impossible and hence use of the Fourier
crosstalk matrix is inappropriate. To deal with the shift-variance
of imaging systems, here we propose to use wavelet basis func-
tions rather than the Fourier basis functions in the analysis. The
resulting crosstalk matrix is called the wavelet crosstalk ma-
trix. The advantage of using wavelets is that they can capture
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both spatial and frequency information and hence they are a nat-
ural choice for analyzing shift-variant systems. We note that
wavelets have already used in image reconstruction for tomog-
raphy, e.g., [4], [5], [6], [7], [8], [9], [10]. Here the wavelet is
used to analyze imaging system performance.

Singular value decomposition (SVD) has also been used in
analyzing imaging systems (e.g., [11], [12]) and reconstructing
images (e.g., [13], [14], [15]). One first chooses a set of basis
functions in the object domain (often voxels) and then conducts
a SVD on the resulting projection matrix. This is equivalent
to the eigenvalue decomposition of the crosstalk matrix. The
spectrum of the eigenvalues can be used to evaluate the system
performance. One problem with SVD is that when comparing
different imaging systems, the set of basis functions (eigenvec-
tors) is often different, which makes the direct comparison of
the eigenvalues less meaningful. Another problem is that the
eigenvectors can be global functions and hence it is difficult to
represent spatial variant responses.

In this paper, we will first review the crosstalk matrix concept
and introduce the wavelet crosstalk matrix in Section II. Then in
Section III we compare the Fourier crosstalk matrix and wavelet
crosstalk matrix for several simulated imaging systems. Finally,
the conclusions are drawn in Section IV.

II. CROSSTALK CONCEPT

A. Fourier Crosstalk Matrix

Barrett et al [1], [2] introduced the Fourier crosstalk matrix in
studying cone beam tomography and related it to the figure of
merit for task performance. Here we briefly review the concept.
Let us consider an object f(x) with a finite support S, and define
an indicator function S(x), which is unity when x ∈ S and zero
otherwise. f(x) can then be represented exactly by the Fourier
series

f(x) =

∞∑
k=1

FkΦk(x), (1)

where
Φk(x) = exp(2πiρk · x)S(x). (2)

Each Φk(x) is a Fourier basis function truncated by the support
region. ρk is the frequency vector that has the same dimension
as x and the ‘·’ denotes the inner product.

Considering a linear imaging system with M measurements
{ym}M

m=1, we suppose that the expectation of the mth measure-
ment is related to f(x) by

ȳm =

∫
f(x)hm(x)dx, (3)

where hm(x) is the response function of the mth measurement.
Using the above Fourier series expansion, we can express ȳm in
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terms of the Fourier coefficients of f(x)

ȳm =

∫ ∞∑
k=1

FkΦk(x)hm(x)dx, (4)

=

∞∑
k=1

Fk

∫
Φk(x)hm(x)dx, (5)

=

∞∑
k=1

FkΨmk, (6)

where Ψmk =
∫

Φk(x)hm(x)dx is the Fourier transform of
the product of the detector response function and the indicator
function, with the transform evaluated at frequency ρk.

Equation (6) essentially converts the imaging task from spa-
tial domain into Fourier domain. In order to be able to recover
a particular Fourier coefficient Fk from the measurements, this
Fourier component must make a significant contribution to the
data, and this contribution must be distinguishable from the con-
tribution made by other Fourier components.

The crosstalk matrix is a way of quantifying these two prob-
lems. The crosstalk matrix B is defined as

B = Ψ†Ψ, (7)

where Ψ† is the adjoint (conjugate transpose) of Ψ.
The diagonal element Bkk measures the strength of the kth

Fourier component in the data space; if Bkk is zero, the compo-
nent makes no contribution to the data and cannot be recovered.
The off-diagonal element Bkk′ , k 6= k′ measures the correlation
between the contribution of the kth Fourier component and the
k′th component; the smaller the ratio |Bkk′ |2/(BkkBk′k′), the
easier the separation of the two Fourier components. While the
full size of B is infinite, any real imaging system can only re-
cover a finite number of Fourier coefficients. Hence we restrict
our interest to anN ×N submatrix ofB, denoted asBN . When
f(x) is band-limited, the submatrix BN is sufficient to charac-
terize the imaging quality.

A general design methodology as discussed in [2] would be
to “choose the system geometry in such a way as to minimize
the off-diagonal elements of BN and maximize the diagonal
elements.” Since the Fourier crosstalk matrix is diagonal for
continuous linear shift-invariant systems, minimizing the off-
diagonal elements of BN is equivalent to make the system shift-
invariant. Thus this method is useful for designing imaging sys-
tems that are close to shift-invariant. If, however, the imaging
system is intrinsically shift-variant, and the designer has no in-
tention to make it shift-invariant, minimizing the off-diagonal
elements of BN would not be appropriate since the off-diagonal
elements can be caused by the shift-variant response. Moreover,
because Fourier basis functions are global functions, it is dif-
ficult to deduce the spatially variant response of a shift-variant
system. Hence, the Fourier crosstalk matrix is not effective for
analyzing shift-variant systems.

B. Wavelet Crosstalk Matrix

To assess the image quality of shift-variant imaging systems,
we propose the wavelet series expansion instead of the Fourier
series expansion. The wavelet series expansion preserves both

spatial and frequency information, and thus is more suitable for
analyzing shift-variant imaging systems.

Using wavelets, f(x) can be represented by [16]

f(x) =

∞∑
l=−∞

∞∑
n=−∞

d(l)
n ψl,n(x), (8)

where ψl,n(x) is the nth wavelet at the lth scale and d(l)
n is the

wavelet coefficient. When f(x) is band-limited with a finite
support, the infinite sums can be approximated by finite sums.
A single index k will also be used in place of the double in-
dices (l, n) by defining a one-to-one mapping between k and
(l, n). Using this wavelet series expansion, the data of the imag-
ing system can be expressed using wavelet coefficients

ȳm =

∫ ∞∑
k=−∞

dkψk(x)hm(x)dx

=

∞∑
k=−∞

dk

∫
ψk(x)hm(x)dx

=
∑

k

dkWmk, (9)

where Wmk =
∫

S
ψk(x)hm(x)dx.

We can then obtain the wavelet crosstalk matrix

C = WTW. (10)

The diagonal elementCkk measures the strength of the contribu-
tion of the kth wavelet to the data, and the off-diagonal element
Ckk′ , k 6= k′ measures the correlation between the contribution
of the two wavelets. The advantage of the wavelet crosstalk
matrix is that it can simultaneously capture both spatial and fre-
quency information. Thus it is more efficient than the Fourier
crosstalk matrix in analyzing shift-variant imaging systems.

C. Generalization of the Crosstalk Concept and Relation to
Least Squares Estimate

The crosstalk concept can be generalized to any basis func-
tions that we would use to represent the object f(x). One of the
most widely used bases is the cubic voxel, i.e.,

f(x) =

∞∑
k=1

vkIk(x),

where each basis Ik(x) is an indicator function on a cubic region
centered at one of the image sampling points in a 3D lattice. The
single index k represents the lexicographically ordered points on
the lattice. The expectation of data can be expressed by

ym =

∞∑
k=1

vkPmk,

where Pmk =
∫

Ik

hm(x)dx.
We then obtain the voxel crosstalk matrix

H = PTP.
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Note that the least squares estimate of vk from data y is

v̂
LS = [PTP ]−1PT

y = H−1PT
y. (11)

This indicates that the crosstalk matrix is closely related to the
least squares solution. This is also true for any other basis func-
tions.

The least square solution is optimum for white Gaussian
noise. When noise from different detectors is different or cor-
related, a weighted least squares solution is more statistically
efficient.

v̂
WLS = [PT Σ−1P ]−1PT Σ−1

y,

where Σ is the noise covariance matrix.
With analogy to (11), we can define a weighted crosstalk ma-

trix
Hw = PT Σ−1P.

Similarly, this weighted crosstalk matrix can be used to evaluate
imaging systems with colored noise. We note that the weighted
crosstalk matrix is essentially the same as the Fisher information
matrix for Gaussian noise and hence it can be directly related to
task specific figures of merit.

III. SIMULATION RESULTS

We conduct computer simulations to compare the wavelet
crosstalk matrix with the Fourier crosstalk matrix for different
imaging systems. The wavelet that we use here is the Haar
wavelet [16]. For all crosstalk matrices, we use 32×32 basis
functions. In order to model the exact response function in the
simulated imaging system, the response function is first com-
puted on a 256×256 fine pixel grid. The eight-fold oversam-
pling is to minimize the discretization effect. The response func-
tions of the Fourier and wavelet bases are then calculated using
the fast Fourier transform and wavelet transform, respectively,
and only the 32×32 basis functions with the lowest frequency
are kept. For Fourier basis functions with line integral model,
the results of this method agree well with that of the continuous
model used in [2], [3].

A. Interior Problem and Exterior Problem

We first simulate the classic interior and exterior problems
[17, p.158]. We choose an example in two-dimensional Radon
tomography with parallel projections for which the original full
projection has 40 view angles and 32 lines of response (LORs)
per view with a sampling distance of 1mm. The interior problem
is simulated by only keeping 11 LORs at the center of each view
angle and the exterior problem is simulated by removing the 11
LORs at the center in each view angle. The fields of view of
the two problems are both 32×32mm2. We compute the pixel,
Fourier, and wavelet crosstalk matrices for the two simulated
problems. The diagonal elements are shown in Figs. 1 and the
absolute correlation coefficients are shown in Fig. 2.

For the interior problem, the diagonal elements of the pixel
crosstalk matrix show large contributions from pixels within the
interior region in the field of view. For the exterior problem,
the contributions only come from pixels in the exterior region.
However, the diagonals of the two Fourier crosstalk matrices are
quite similar, showing each Fourier basis makes similar contri-
bution to both problems. While there is slight difference in the
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Fig. 1. The diagonal elements of (a) the pixel crosstalk matrix, (b) the Fourier
crosstalk matrix, and (c) the wavelet crosstalk matrix for the interior problem
and the exterior problem. The DC component is at the center in the Fourier
image, and is at the upper left corner in the wavelet image.

off-diagonals of the Fourier crosstalk matrices for the two prob-
lems as shown in the correlation images (Fig. 2), it is rather dif-
ficult to distinguish the features of the two problems using the
Fourier crosstalk matrix. In comparison, the wavelet crosstalk
matrices clearly capture the distinct features of the two prob-
lems by preserving both spatial and frequency information, i.e.,
combination of the pixel crosstalk matrix and Fourier crosstalk
matrix. It shows that the wavelets corresponding to the inte-
rior region make the major contributions to data in the interior
problem and the contributions from the wavelets in the exte-
rior region depend on the spatial and frequency locations of the
wavelets. For example, at the top and bottom regions, only verti-
cal wavelets have contributions, while at the left and right, only
horizontal wavelets have contributions. For the exterior prob-
lem only wavelets of the exterior region have contributions and
again it depends on the spatial and frequency locations of the
wavelets.

B. Dual-planar PET

Here we consider a dual-planar design of a positron emission
tomography (PET) system for imaging breast (Fig. 3a). This
system has two parallel detector heads and each has 32 detec-
tors. All the lines of response are collected. With the finite de-
tector heads, the view angles are limited, and there are varying
numbers of LORs in each view. In Fig. 3 we show the diagonals
of the pixel, Fourier, and wavelet crosstalk matrices. In Fig. 4,
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Fig. 2. The absolute value of the correlations between the (a) pixel bases, (b) Fourier bases, and (c) wavelet bases for the interior problem and the exterior problem.
The off-diagonals have been divided by the square root of the product of the corresponding diagonals and the diagonals have been normalized to unity.
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Fig. 3. (a) The dual-planar system. The diagonal elements of (b) the pixel
crosstalk matrix, (c) the Fourier crosstalk matrix, and (d) the wavelet
crosstalk matrix. The DC component is at the center in the Fourier image,
and is at the upper left corner in the wavelet image.

we show the correlation images of the Fourier crosstalk matrix
and the wavelet crosstalk matrix. Again, it is rather difficult to
see the spatially variant response of the imaging system from
the Fourier crosstalk matrix as such variation is woven into the
correlations between Fourier coefficients. In contrast, the diago-
nal of the wavelet crosstalk matrix captures both the spatial and
frequency response of the dual-planar system. The strong cor-
relations between wavelet coefficients are largely due to the fact
that such limited angle tomography is very ill-posed.

C. Rectangular PET

The last imaging system that we simulate is a rectangular
PET system (Fig. 5a). This design is also being pursued for
breast imaging [18]. Because of the solid angle effect, the short
LORs (near the corners) have higher sensitivity than the long
LORs. As a result, the rectangular geometry causes highly
shift-variant sensitivity as shown by the diagonals of the pixel
crosstalk matrix (Fig. 5b). The calculated wavelet crosstalk ma-
trix and Fourier crosstalk matrix for this system are shown in
Fig. 6 and Fig. 7.

In this case, the spatially variant response causes strong corre-
lations between different Fourier components (Fig. 7a). By just
looking at the Fourier crosstalk matrix, one might doubt that this
rectangular PET could recover any Fourier component. How-
ever, we know that this system has complete sampling and the
result should not be so bad. This is clearly shown by the wavelet
crosstalk matrix. The energy is more concentrated around diag-
onal elements and the correlations between different wavelets
are relatively small. The wavelet crosstalk matrix also shows
that the rectangular PET has much higher sensitivity near the
corners (Fig. 6b). This clearly demonstrates the advantage of
the wavelet crosstalk matrix.
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Fig. 4. The correlation images of (a) the Fourier crosstalk matrix and (b) the
wavelet crosstalk matrix for the rectangular PET. The off-diagonals have
been divided by the square root of the product of the corresponding diago-
nals and the diagonals have been normalized to unity.
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Fig. 5. (a) A rectangular PET system with 32 detectors on each side. The field
of view is the whole square enclosed by the detectors. (b) The diagonals
of the pixel crosstalk matrix (the maximum intensity has been truncated to
shown more details).
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Fig. 6. The diagonal elements of (a) the Fourier crosstalk matrix and (b) the
wavelet crosstalk matrix for the rectangular PET. The DC component is at
the center in the Fourier image, and at the lower right corner in the wavelet
image. The intensity in the wavelet image is truncated.
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Fig. 7. The correlation images of (a) the Fourier crosstalk matrix and (b) the
wavelet crosstalk matrix for the rectangular PET. The off-diagonals have
been divided by the square root of the product of the corresponding diago-
nals and the diagonals have been normalized to unity.

IV. CONCLUSION AND DISCUSSION

We have introduced the wavelet crosstalk matrix based on the
wavelet series expansion of the object function. In comparison
to the Fourier crosstalk matrix, the wavelet crosstalk matrix can
simultaneously capture both spatial and frequency information
and hence is more efficient for the analysis of shift-variant imag-
ing systems.

We have also linked the crosstalk matrix with least squared es-
timation and have introduced the weighted crosstalk matrix for
weighted least squared estimation. We pointed out the equiv-
alence between the (weighted) crosstalk matrix and the Fisher
information matrix for Gaussian noise. Thus, the crosstalk ma-
trix can be directly related to task specific figures of merit.

We have demonstrated the advantages of the wavelet crosstalk
matrix using computer simulations. Future work will include
applying the wavelet crosstalk matrix to analysis of imaging sys-
tems with complex detector geometry and/or motion.
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